Dative $\operatorname{Pd}(0)-\mathrm{Mo}(\mathrm{II})$ Bonds in a Linearly Aligned Tetrametal System: Preparation, Characterization, and Reaction of a Tetranuclear $\operatorname{Pd}(0)-\mathbf{M o}(\mathrm{II})-\mathbf{M o}(\mathrm{II})-\mathbf{P d}(0)$ Supported by Four 6-Diphenylphosphino-2-pyridonate Ligands

Kazushi Mashima,*, ${ }^{\dagger}$ Atsushi Fukumoto, ${ }^{\dagger}$ Hiroshi Nakano, ${ }^{\ddagger}$ Yutaka Kaneda, ${ }^{\dagger}$ Kazuhide Tani, ${ }^{\dagger}$ and Akira Nakamura ${ }^{\ddagger}$

Department of Chemistry Graduate School of Engineering Science Osaka University, Toyonaka, Osaka 560-8531, Japan, and Department of Macromolecular Science Graduate School of Science Osaka University, Toyonaka, Osaka 560-0043, Japan

Received May 21, 1998
The reactivity of multiply bonded dinuclear complexes has been extensively studied. ${ }^{1}$ We have been interested in the chemistry of metal-metal-bonded linear chain compounds, ${ }^{2-4}$ and we have already reported some of the new reactions of the quadruply bonded dinuclear dimolybdenum(II) complex, Mo_{2} (pyphos) $)_{4}$ (1)

3

(pyphos $=6$-diphenylphosphino-2-pyridonate), with two palladium(I) species at both of the axial positions of the Mo_{2} core to form the metal-metal-bonded tetranuclear complex $\mathrm{Mo}_{2} \mathrm{Pd}_{2} \mathrm{Cl}_{2}-$ (pyphos) $)_{4}(3)$, which has two single $\mathrm{Pd}(\mathrm{I})-\mathrm{Mo}(\mathrm{II})$ bonds and one triple Mo-Mo bond. ${ }^{5,6}$ This reaction involves the coordination of two $\mathrm{Pd}(\mathrm{II})$ at the axial positions of the Mo_{2} core of complex 1 to form $\mathrm{Mo}_{2} \mathrm{Pd}_{2} \mathrm{Cl}_{4}$ (pyphos) $)_{4}$ (2) and then the reduction of Pd (II) to $\mathrm{Pd}(\mathrm{I})$ as a result of the formation of $\mathrm{Mo}-\mathrm{Pd} \sigma$ bonds. We also reported an axial interaction of the quadruple $\mathrm{Cr}-\mathrm{Cr}$ bond with two platinum(II) surrounded by pyphos ligands, i.e., $d-d$ dative bond. ${ }^{7}$ Here we report the synthesis, characterization, and

[^0]

Figure 1. ORTEP drawing of $\mathbf{5 c}$. Selected bond distances (\AA) and angles (deg): $\mathrm{Mo}-\mathrm{Mo}=2.097(2), \mathrm{Mo} \cdots \mathrm{Pd}=3.127(1), \mathrm{Pd}-\mathrm{P} 1=2.373(3)$, $\mathrm{Pd}-\mathrm{P} 2=2.402(3), \mathrm{Pd}-\mathrm{C} 1=2.12(1), \mathrm{Pd}-\mathrm{C} 2=2.11(1), \mathrm{C} 1-\mathrm{C} 2=$ $1.45(1) ; \mathrm{P} 1-\mathrm{Pd}-\mathrm{P} 2=117.8(1), \mathrm{P} 1-\mathrm{Pd}-\mathrm{C} 1=102.8(3), \mathrm{P} 1-\mathrm{Pd}-\mathrm{C} 2$ $=141.9(3), \mathrm{P} 2-\mathrm{Pd}-\mathrm{C} 1=138.6(3), \mathrm{P} 2-\mathrm{Pd}-\mathrm{C} 2=98.6(3), \mathrm{C} 1-\mathrm{Pd}-$ $\mathrm{C} 2=40.1(4), \mathrm{Pd} \cdots \mathrm{Mo}-\mathrm{Mo}=164.62(5)^{\circ}$; a torsion angle of $\mathrm{Pd}-\mathrm{Mo}-$ $\mathrm{Mo}-\mathrm{Pd}=138.1(2)^{\circ}$.
reactions of a tetrametal complex $\mathrm{Mo}_{2} \mathrm{Pd}_{2}$ (pyphos) ${ }_{4}$ (4), which has a $\operatorname{Pd}(0)-\mathrm{Mo}(\mathrm{II})-\mathrm{Mo}(\mathrm{III})-\mathrm{Pd}(0)$ skeleton.

Reaction of 1^{6} with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ in THF gives the tetrametal complex 4 in quantitative yield. ${ }^{8}$ Alternatively, complex 4 can be prepared by reduction of the $\mathrm{Pd}(\mathrm{I})$ complex $3^{5,6}$ with $\mathrm{Et}_{4} \mathrm{NBH}_{4} /$ $\mathrm{CH}_{3} \mathrm{OH}$ in THF at room temperature. The $v(\mathrm{Mo}-\mathrm{Mo})$ in the resonance Raman spectrum of $\mathbf{4}$ is observed at $389 \mathrm{~cm}^{-1}$, a value that is at lower wavenumber than those found in the quadruply bonded dimolybdenum complexes $\mathbf{1}\left(394 \mathrm{~cm}^{-1}\right)$ and $2\left(403 \mathrm{~cm}^{-1}\right)$ but is higher than that found for complex $\mathbf{3}\left(386 \mathrm{~cm}^{-1}\right)$, indicating the existence of a $\mathrm{Pd}(0) \rightarrow \mathrm{Mo}(\mathrm{II})$ dative bond which elongates the quadruple Mo_{2} bond to some extent. ${ }^{7,9}$

Complex 4 has two $\operatorname{Pd}(0)$ centers that can react with a variety of olefinic compounds; such reactions give $\mathrm{Mo}_{2} \mathrm{Pd}_{2}$ (pyphos) $)_{4}(\mathrm{~L})_{2}$ [5: L = acrylonitrile (a), fumaronitrile (b), tetracyanoethylene

5
(c)] in moderate yields. ${ }^{10}$ It is a notable feature that the value of $\nu(\mathrm{Mo}-\mathrm{Mo})$ in the resonance Raman spectra of $\mathbf{5 a} \mathbf{- c}$ varied from $389 \mathrm{~cm}^{-1}(\mathbf{5 a})$, comparable to that found for the triply bonded Mo_{2} in 3, to $399(\mathbf{5 b})$ and $404 \mathrm{~cm}^{-1}(\mathbf{5 c})$, corresponding to the value found for the quadruply bonded Mo_{2} of $\mathbf{1}$ and $\mathbf{2}$. The increase in the wavenumber of $v(\mathrm{Mo}-\mathrm{Mo})$ can be attributed to the extent of deformation from linearity of the tetrametal system and is indicative of the decrease in bonding interaction between the Pd and the Mo atoms. The crystal structure of $\mathbf{5 c}$ is shown in Figure 1. ${ }^{11}$ Unlike analogous compounds 2, 3, and 4, which

[^1]have a strictly trans arrangement of the P-donor atoms, $\mathbf{5 c}$ has a cis arrangement and thus the four metals are not straight linear.

The palladium(0) complex 4 is very reactive toward oxidative addition reaction. Thus, treatment of $\mathbf{4}$ with dichloromethane at room temperature results in the formation of a palladium(II) complex, $\mathrm{Mo}_{2} \mathrm{Pd}_{2} \mathrm{Cl}_{2}\left(\mathrm{CH}_{2} \mathrm{Cl}\right)_{2}(\text { pyphos })_{4}(6)$ (eq 1), ${ }^{12}$ which is a

rare example of the oxidative addition of dichloromethane to a $\operatorname{Pd}(0)$ center, e.g., mononuclear $\operatorname{Pd}(0)$ complexes ${ }^{13,14}$ and a dinuclear $\operatorname{Pd}(0)$ complex, $\mathrm{Pd}_{2}(\mathrm{dpm})_{3}(\mathrm{dpm}=$ bis(diphenylphosphino)methane), ${ }^{15,16}$ though oxidative addition of dichloromethane to d^{9} species, $\operatorname{Rh}(\mathrm{I})$ and $\operatorname{Ir}(\mathrm{I})$, readily proceeded. ${ }^{17-21}$

[^2]

Figure 2. ORTEP drawing of 6 . Selected bond distances (\AA) and angles (deg): $\mathrm{Mo}-\mathrm{Mo}^{*}=2.106(2), \mathrm{Mo} \cdots \mathrm{Pd}=2.945(2), \mathrm{Pd}-\mathrm{Cl}(1)=2.368-$ (6), $\mathrm{Pd}-\mathrm{P}(1)=2.340(6), \mathrm{Pd}-\mathrm{P}(2)=2.358(6), \mathrm{Pd}-\mathrm{C}(1)=2.06(2), \mathrm{Cl}-$ (2) $-\mathrm{C}(1)=1.81(2) ; \mathrm{Mo}-\mathrm{Pd}-\mathrm{Cl}(1)=95.1(1), \mathrm{Mo}-\mathrm{Pd}-\mathrm{C}(1)=92.6(5)$, $\mathrm{Mo}-\mathrm{Pd}-\mathrm{P}(1)=81.8(1), \mathrm{Mo}-\mathrm{Pd}-\mathrm{P}(2)=82.8(1), \mathrm{Pd}-\mathrm{C}(1)-\mathrm{Cl}(2)=$ 105.8(9).

The crystal structure of $\mathbf{6}$ is shown in Figure 2;22 there is a 2-fold axis perpendicular to the $\mathrm{Mo}-\mathrm{Mo}$ vector passing through the center of the Mo-Mo bond. Four of the metal atoms, Pd, Mo, Mo, and Pd, are aligned linearly. Each of the palladium atoms is coordinated to a chlorine atom and a chloromethyl group in square planar geometry.

In summary, we prepared a novel straight linear $\mathrm{Mo}^{\mathrm{II}}{ }_{2} \mathrm{Pd}^{0}{ }_{2}$ tetranuclear complex 4 . We found the facile oxidative addition of dichloromethane to the $\operatorname{Pd}(0)$ center of the complex 4 . The chemical reactivity of $\mathbf{4}$ is now under investigation.

Acknowledgment. K. M. is grateful for financial support from the Ministry of Education, Science, Sports and Culture of Japan. This work was also supported by Asahi Glass Foundation.

Supporting Information Available: Experimental details for the preparation of $\mathbf{4 - 6}$; final positional parameters and final thermal parameters for 5 c and $\mathbf{6}$ and figures giving additional atom labeling for 5c and 6 (40 pages, print/PDF). This material is contained in many libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS. See any current masthead page for ordering information and Web access instructions.

JA9817702

(22) Structure determination of $\mathbf{6}$ is given in Supporting Information.

[^0]: ${ }^{\dagger}$ Graduate School of Engineering Science.

 * Graduate School of Science.
 (1) Cotton, F. A.; Walton, R. A. Multiple Bonds Between Metal Atoms, 2nd ed.; Oxford University Press: New York, 1993.
 (2) Cotton, F. A.; Daniel, L. M.; Murillo, C. A.; Wang, X. Chem. Commun. 1998, 39.
 (3) Shieh, S.-J.; Chou, C.-C.; Lee, G.-H.; Wang, C.-C.; Peng, S.-M. Angew. Chem., Int. Ed. Engl. 1997, 36, 56.
 (4) Some recent examples of trinuclear complexes: Kannan, S.; James, A. J.; Sharp, P. R. J. Am. Chem. Soc. 1998, 120, 215. Cotton, F. A.; Danniels, L. M.; Murillo, C. A.; Pascual, I. J. Am. Chem. Soc. 1997, 119, 10223. Cotton, F. A.; Danniels, L. M.; Jordan, G. T., IV; Murillo, C. A. J. Am. Chem. Soc. 1997, 119, 10377; Cotton, F. A.; Daniels, L. M.; Jordan, G. T., IV Chem. Commun. 1997, 421. Sheu, J.-T.; Lin, C.-C.; Chao, I.; Wang, C.-C.; Peng, S.-M. J. Chem. Soc., Chem. Commun. 1996, 315. Carlson, T. F.; Fackler, J. P., Jr.; Staples, R. J.; Winpenny, R. E. P. Inorg. Chem. 1995, 34, 426. Yang, E.-C.; Cheng, M.-C.; Tsai, M.-S.; Peng, S.-M. J. Chem. Soc., Chem. Commun. 1994, 2377. Schreiber, A.; Krizanovic, O.; Fusch, E. C.; Lippert, B.; Lianza, F.; Albinati, A.; Hill, S.; Goodgame, D. M. L.; Stratemeier, H.; Hitchman, M. C. Inorg. Chem. 1994, 33, 6101.
 (5) Mashima, K.; Nakano, H.; Nakamura, A. J. Am. Chem. Soc. 1993, 115, 11632.
 (6) Mashima, K.; Nakano, H.; Nakamura, A. J. Am. Chem. Soc. 1996, 118, 9083.

[^1]: (7) Mashima, K.; Tanaka, M.; Tani, K.; Nakamura, A.; Mori, W.; Takeda, S.; Yamaguchi, K. J. Am. Chem. Soc. 1997, 119, 4307.
 (8) 4: dark brown solids, mp 215-230 ${ }^{\circ} \mathrm{C}$ (dec); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}, 308 \mathrm{~K}$, $270 \mathrm{MHz}) \delta 6.27-6.32(\mathrm{~m}, 8 \mathrm{H}), 6.70(\mathrm{t}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.07-7.08(\mathrm{~m}$, 24H), 7.51 (m, 16H); ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 308 \mathrm{~K}, 109 \mathrm{MHz}\right) \delta 22.8$ (s); UVvis (THF), $\lambda_{\text {max }}, \mathrm{nm}\left(\epsilon, \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right) 476$ (20 000); Raman, $\nu(\mathrm{Mo}-\mathrm{Mo}) 389$ cm^{-1}, ion spray MS $m / z 1518\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{68} \mathrm{H}_{52} \mathrm{Mo}_{2} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{P}_{4} \mathrm{Pd}_{2} \cdot$ $\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right): \mathrm{C}, 54.39 ; \mathrm{H}, 3.80 ; \mathrm{N}, 3.52$. Found: C, $54.48 ; \mathrm{H}, 4.11 ; \mathrm{N}, 3.51$.
 (9) It might be assumed that the heterometal bond in 4 has some contribution of a $\operatorname{Pd}(\mathrm{I})-\operatorname{Mo}(\mathrm{I})$ bond which results from one-electron transfer from $\operatorname{Pd}(0)$ to Mo (II).
 (10) Preparation and spectral data of $\mathbf{5 a}-\mathbf{c}$ are given in Supporting Information.

[^2]: (11) Structure determination of $\mathbf{5 c}$ is given in Supporting Information.
 (12) 6: 67% yield, dark red microcrystals, mp $299-300^{\circ} \mathrm{C}$ (dec); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 308 \mathrm{~K}, 270 \mathrm{MHz}\right) \delta 3.27\left(\mathrm{dt},{ }^{2} J_{\mathrm{HH}}=14 \mathrm{~Hz},{ }^{3} J_{\mathrm{PH}}=5 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.58$ $\left(\mathrm{dt},{ }^{2} J_{\mathrm{HH}}=13 \mathrm{~Hz},{ }^{3} J_{\mathrm{PH}}=5 \mathrm{~Hz}, 2 \mathrm{H}\right), 5.99\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=9 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.37\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}\right.$ $=8 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{~m}, 4 \mathrm{H}), 7.07(\mathrm{~m}, 4 \mathrm{H}), 7.18-7.54(\mathrm{~m}, 36 \mathrm{H}), 7.83(\mathrm{~m}, 4 \mathrm{H})$, $7.94(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 308 \mathrm{~K}, 202 \mathrm{MHz}\right) \delta 23.29\left(\mathrm{~d},{ }^{2} J_{\mathrm{PP}}=\right.$ $406 \mathrm{~Hz}), 24.80(\mathrm{~d}) ;$ UV - vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right), \lambda_{\max }, \mathrm{nm}\left(\epsilon, \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right) 478(3.7 \times$ 10^{3}); FABMS spectrum $m / z 1688\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{70} \mathrm{H}_{56} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{P}_{4} \mathrm{Mo}_{2^{-}}$ $\mathrm{Pd}_{2} \mathrm{Cl}_{4} \cdot\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right):$ C, $48.11 ; \mathrm{H}, 3.30 ; \mathrm{N}, 3.16$. Found: C, $48.53 ; \mathrm{H}, 3.30 ; \mathrm{N}$, 3.50. We measured the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 4 in dichloromethane $-d_{2}$, which exhibited some peaks due to transient species together with a weak singlet peak due to 3. However, we have not been able to determine their structures except for $\mathbf{3}$. We are now making efforts to elucidate this reaction mechanism.
 (13) Huser, M.; Youinou, M.-T.; Osborn, J. A. Angew. Chem., Int. Ed. Engl. 1989, 28, 1386.
 (14) Leoni, P. Organometallics 1993, 12, 2432.
 (15) Balch, A. L.; Hunt, C. T.; Lee, C.-L.; Olmstead, M. M.; Farr, J. P. J. Am. Chem. Soc. 1981, 103, 3764.
 (16) Young, S. J.; Kellenberger, B.; Reibenspies, J. H.; Himmel, S. E.; Manning, M.; Anderson, O. P.; Stille, J. K. J. Am. Chem. Soc. 1988, 110 5744.
 (17) Yoshida, T.; Ueda, T.; Adachi, T.; Yamamoto, K.; Higuchi, T. J. Chem. Soc., Chem. Commun. 1985, 1137.
 (18) Marder, T. B.; Fultz, W. C.; Calabrese, J. C.; Harlow, R. L.; Milstein, D. J. Chem. Soc., Chem. Commun. 1987, 1543.
 (19) Nishiyama, H.; Horihata, M.; Hirai, T.; Wakamatsu, S.; Itoh, K. Organometallics 1991, 10, 2706.
 (20) Haarman, H. F.; Ernsting, J. M.; Kranenburg, M.; Kooijman, H.; Veldman, N.; Spek, A. L.; van Leeuen, P. W. N. M.; Vrieze, K. Organometallics 1997, 16, 887 and references therein.
 (21) Brunet, J.-J.; Couillens, X.; Daran, J.-C.; Diallo, O.; Lepetit, C.; Neibecker, D. Eur. J. Inorg. Chem. 1998, 1, 349.

